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The expression levels of many thousands of genes can be measured simulta-
neously by DNA microarrays (chips). This novel experimental tool has revolu-
tionized research in molecular biology and generated considerable excitement.
A typical experiment uses a few tens of such chips, each dedicated to a single
sample—such as tissue extracted from a particular tumor. The results of such an
experiment contain several hundred thousand numbers, that come in the form
of a table, of several thousand rows (one for each gene) and 50–100 columns
(one for each sample). We developed a clustering methodology to mine such
data. In this review I provide a very basic introduction to the subject, aimed at a
physics audience with no prior knowledge of either gene expression or clustering
methods. I explain what genes are, what is gene expression and how it is
measured by DNA chips. Next I explain what is meant by ‘‘clustering’’ and how
we analyze the massive amounts of data from such experiments, and present
results obtained from analysis of data from colon cancer, brain tumors and
breast cancer.
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1. REFLECTION AND OUTLINE

The subject of this paper does not seem to have much to do with Statistical
Mechanics, the subject I learned from Michael Fisher. The aim of
the research I am describing is to gain understanding of Biology, and the
methodology used is in the realm of Applied Mathematics and Pattern
Recognition. Closer inspection reveals, however, that the ideas that
underlie my approach rely strongly on subjects to which I have been



introduced by Michael: Monte Carlo simulations (1) and phase transitions in
Potts ferromagnets. (2) The problem area and technology I describe below
are among of the most fascinating and exciting topics I encountered. I hope
that Michael, who always had a keen interest in biology, will find the
applicability of Statistical Physics to this type of research gratifying.

This paper has three parts, aimed at explaining the meaning of its title.
The first part is a telegraphic introduction to the relevant biology, starting
from genes and transcription and ending with an explanation of what
DNA chips are and the kind of data that they produce. The second part is
an equally concise introduction3 to cluster analysis, leading to a recently

3 This paper is not intended to be a review of clustering methods! For a recent review of
clustering methods applied to gene expression see ref. 3.

introduced method, Coupled Two-Way Clustering (CTWC), that was
designed for the analysis and mining of data obtained by DNA chips. The
third section puts the two introductory parts together and demonstrates
how CTWC is used to obtain insights from the anaysis of gene expression
data in several clinically relevant contexts, such as colon cancer, glioblastoma
and breast cancer.

2. INTRODUCTION TO THE RELEVANT BIOLOGY

2.1. Genes and Gene Expression

Since my aim is to introduce only those concepts that are absolutely
essential for understanding the data that will be presented and analyzed,
I present here only a severely oversimplified description of a large number
of very complex processes. The interested reader is referred to two excellent
textbooks. (4, 5)

Cells and organisms are divided into two classes; procaryotic (such as
bacteria) and eucaryotic. The latter have a nucleus; see the schematic
drawing of Fig. 1. The cell is enclosed by its membrane; embedded in the
cell’s cytoplasm is it’s nucleus, surrounded and protected by its own mem-
brane. The nucleus contains DNA, a one dimensional molecule, made of
two complementary strands, coiled around each other as a double helix.
Each strand consists of a backbone to which a linear sequence of bases
is attached. There are four kinds of bases, denoted by C, G, A, T. The
two strands contain complementary base sequences and are held together
by hydrogen bonds that connect matching pairs of bases; G–C (three
hydrogen bonds) and A–T (two).
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Fig. 1. Caricature of a eucaryotic cell: its nucleus contains DNA, whereas the ribosomes are
in the cytoplasm.

A gene is a segment of DNA, which contains the formula for the chemi-
cal composition of one particular protein.4 Proteins are the working mole-

4 In fact, there are also genes that do not code for proteins, but for RNA molecules, men-
tioned below. Furthermore, the gene to protein correspondence is not one to one: there are
genes that code for many different proteins, derived by alternative splicing of messenger
RNA.

cules of life; most biological processes that take place in a cell are carried
out by proteins. Topologically, a protein is also a chain; each link is an
amino acid, with neighbors along the chain connected by covalent bonds.5

5 This polypeptide chain folds, under physiological conditions, into a unique complex
three-dimensional native conformation.

All proteins are made of 20 different amino acids—hence the chemical
formula of a protein of length N is an N-letter word, whose letters are
taken from a 20-letter alphabet. A gene is nothing but an alphabetic cook-
book recipe, listing the order in which the amino acids are to be strung
when the corresponding protein is synthesized. Genetic information is
encoded in the linear sequence in which the bases on the two strands are
ordered along the DNA molecule. The genetic code is a universal transla-
tion table, with specific triplets of consecutive bases coding for every amino
acid.

The genome contains the collection of all the genes that code for the
chemical formulae of all the proteins (and RNA) that an organism needs
and produces. The genome of a simple organism such as yeast contains
about 6000 genes; the human genome has between 30,000 and 40,000.
An overwhelming majority (98%) of human DNA contains non-coding
regions, i.e., strands that do not code for any particular protein (but play
a role in regulating the level of synthesis of the different proteins).

Here is an amazing fact; every cell of a multicellular organism contains
its entire genome! That is, every cell has the entire set of recipes the orga-
nism may ever need; the nucleus of each of the reader’s cells contains every
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piece of information needed to make a copy (clone) of him/her! Even
though each cell contains the same set of genes, there is differentiation: cells
of a complex organism, taken from different organs, have entirely different
functions and the proteins that perform these functions are very different.
Cells in our retina need photosensitive molecules, whereas our livers do not
make much use of these. A gene is expressed in a cell when the protein it
codes for is actually synthesized. In an average human cell about 10,000
genes are expressed. The set of (say 10,000) numbers that indicate the
expression level of each of these genes is called the expression profile of the
cell.

The large majority of abundantly expressed genes are associated with
common functions, such as metabolism, and hence are expressed in all
cells. However, there will be differences between the expression profiles of
different cells, and even in a single cell, expression will vary with time, in a
manner dictated by external and internal signals that reflect the state of the
organism and the cell itself.

Synthesis of proteins takes place at the ribosomes. These are enormous
machines (made also of proteins) that read the chemical formulae written
on the DNA and synthesize the protein according to the instructions. The
ribosomes are in the cytoplasm, whereas the DNA is in the protected envi-
ronment of the nucleus. This poses an immediate logistic problem—how
does the information get transferred from the nucleus to the ribosome?

2.2. Transcription and Translation

The obvious solution of information transfer would be to rip out the
piece of DNA) that contains the gene that is to be expressed, and transport
it to the cytoplasm. The engineering analogue of this strategy is the follow-
ing. Imagine an architect, who has a single copy of a design for a building,
stored on the hard disk of his PC. Now he has to transfer the blueprint to
the construction site, in a different city. He probably will not opt for
tearing out his hard disk and mailing it to the site, risking it being irrever-
sibly lost or corrupted. Rather, he will prepare several diskettes, that
contain copies of his design, and mail these in separate envelopes.

This is precisely the strategy adopted by cells. When a gene receives a
command to be expressed, the corresponding segment of the double helix
of DNA opens, and a precise copy of the information, as written on one of
the strands, is prepared (see Fig. 2). This ‘‘diskette’’ is a linear molecule
called messenger RNA (mRNA), and the process of its production is called
transcription. The subsequent reading of the mRNA, deciphering the
message (written using base triplets) into amino acids and synthesis of the
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Fig. 2. Transcription involves synthesis of mRNA, a copy of the gene encoded on the DNA
(left). The mRNA molecules leave the nucleus and serve as the template for protein synthesis
by the ribosomes (right).

corresponding protein at the ribosomes6 is called translation. In fact, when

6 Actually the mRNA is ‘‘read’’ by one end of another molecule, transfer RNA; the amino
acid that corresponds to the triplet of bases that has just been read is attached to the other
end of the tRNA. This process, and the formation of the peptide bond between subsequent
amino acids, takes place on the ribosome, which moves along the mRNA as it is read.

many molecules of a certain protein are needed, the cell produces many
corresponding mRNAs, which are transferred through the nucleus’ mem-
brane to the cytoplasm, and are ‘‘read’’ by several ribosomes. Thus the
single master copy of the instructions, contained in the DNA, generates
many copies of the protein (see Fig. 2). This transcription strategy is
prudent and safe, preserving the precious master copy; at the same time it
also serves as a remarkable amplifier of the genetic information.

A cell may need a large number of some proteins and a small number
of others. That is, every gene may be expressed at a different level. The
manner in which the instructions to start and stop transcription are given
for a certain gene is governed by regulatory networks, which constitute
one of the most intricate and fascinating subjects of current research.
Transcription is regulated by special proteins, called transcription factors,
which bind to specific locations on the DNA, mostly upstream from the
coding region. Their binding to the DNA initiates and enhances or
suppresses transcription.

This leads us to the basic paradigm of gene expression analysis:

7 By ‘‘biological state’’ I mean whether the cell is healthy or diseased,is it starving, is it dif-
ferentiated? The tissue type to which it belongs, whether it ready to undergo cell division, etc.

The ‘‘biological state’’7 of a cell is reflected by its expression profile: the expression
levels of all the genes of the genome. These, in turn, are reflected by the concen-
trations of the corresponding mRNA molecules.
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This paradigm is by no means trivial or perfectly true. One may argue
that the state of a cell at a given moment is defined by its chemical compo-
sition, i.e., the concentration of all the constituent proteins. There is no
assurance that these concentrations are directly proportional to the con-
centrations of the related mRNA molecules. The rates of degradation of
the different mRNA, the efficiency of their translation to proteins, the rate
of degradation of the proteins—all these are regulated. Nevertheless, this is
our working assumption; specifically, we assume that for human cells the
expression levels of all 40,000 genes completely specify the state of the par-
ticular tissue from which the cells were taken. The question we turn to
answer is: how does one measure, for a given cell or tissue, the expression
levels of thousands of genes?

2.3. DNA Chips

A DNA Chip is the instrument that measures simultaneously the con-
centration of thousands of different mRNA molecules. It is also referred to
as a DNA microarray (see ref. 6 for a recent review of the technology,
and the special supplement of Nature Genetics 21, Jan. 1999). DNA
microarrays, produced by Affymetrix, (7) can measure simultaneously the
expression levels of up to 20,000 genes; the less expensive spotted arrays (8)

do the same for several thousand. Schematically, the Affymetrix arrays are
produced as follows. Divide a chip (a glass plate of about 1 cm across) into
‘‘pixels’’—each dedicated to one gene g. Millions of 25 base pair long pieces
(oligonucleotides) of single strand DNA, copied from a particular segment
of gene g are photolitigraphically synthesised on the dedicated pixel (these
are referred to as ‘‘probes’’).8 The mRNA molecules are extracted from the

8 Actually next to a pixel of 25-mers that are perfect copies of a bit of a gene, one places
copies of mismatched 25-mers—in these a central base has been changed. One then measures
the difference between hybridization (e.g., attachment—see below) to perfect match (PM)
and mismatch (MM). Each gene is represented on a chip by 20 such pairs of 25-mers.

cells taken from the tissue of interest (such as tumor tissue obtained by
surgery). They are Reverse Transcribed from RNA to DNA and their con-
centration is enhanced. Next, the resulting DNA is transcribed back into
fluorescently marked single strand RNA. The solution of marked and
enhanced mRNA molecules (‘‘targets’’) that are copies of the mRNA mol-
ecules that were originally extracted from the tissue, is placed on the chip
and the labeled RNA diffuse over the dense forest of single strand DNA
probes. When such an mRNA encounters a bit of the probe, of which the
RNA is a perfect copy, it hybridizes to this strand—i.e., attaches to it with
a high affinity (considerably higher than to a probe of which the target is
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not a perfect copy). When the mRNA solution is washed off, only those
molecules that found their perfect match remain stuck to the chip. Now the
chip is illuminated with a laser, and these stuck ‘‘targets’’ fluoresce; by
measuring the light intensity emanating from each pixel, one obtains a
measure of the number of targets that stuck, which, in turn, is proportional
to the concentration of these mRNA in the investigated tissue. In this
manner one obtains, from a chip on which Ng genes were placed, Ng

numbers that represent the expression levels of these genes in that tissue.
A typical experiment provides the expression profiles of several tens of
samples (say Ns % 100), over several thousand (Ng) genes. These results are
summarized in an Ng × Ns expression table; each row corresponds to one
particular gene and each column to a sample. Entry Egs of such an expres-
sion table stands for the expression level of gene g in sample s. For
example, the experiment on colon cancer, first reported by Alon et al., (9)

contains Ng=2000 genes whose expression levels passed some threshold,
over Ns=62 samples, 40 of which were taken from tumor and 22 from
normal colon tissue.

Such an expression table contains up to several hundred thousand
numbers; the main issue addresed in this paper concerns the manner in
which such vast amounts of data are ‘‘mined,’’ to extract from it biologi-
cally relevant meaning. Several obvious aims of the data analysis are the
following:

1. Identify genes whose expression levels reflect biological processes
of interest (such as development of cancer).

2. Group the tumors into classes that can be differentiated on the
basis of their expression profiles, possibly in a way that can be interpreted
in terms of clinical classification. If one can partition tumors, on the basis
of their expression levels, into relevant classes (such as, e.g., positive vs
negative responders to a particular treatment), the classification obtained
from expression analysis can be used as a diagnostic and thereupeutic tool.9

9 For example one hopes to use the expression profile of a tumor to select the most effective
therapy.

3. Finally, the analysis can provide clues and guesses for the function
of genes (proteins) of yet unknown role.10

10 The statement ‘‘the human genome has been sequenced’’ means that sequence information
of all the bits of the human DNA have been determined. The task of placing all these in
the correct order, identifying all the (30—40,000) genes, and determining their biological
functions, however, still lies ahead.
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This concludes the brief and very oversimplified review of the biology
background that is essential to understand the aims of this research. In
what follows I review a particular method that was designed for mining
such expression data.

3. CLUSTER ANALYSIS

3.1. Supervised Versus Unsupervised Analysis

Say we have two groups of samples, that have been labeled on the
basis of some external (i.e., not contained in the expression table) informa-
tion, such as clinical identification of tumor and normal samples. Our aim
is to identify genes whose expression levels are significantly different
between these two groups. Supervised analysis is the most suitable method
for this kind of task. The simplest way is to treat the genes one at a time;
for gene g we have Ns expression levels Ags, and we propose as a null
hypothesis that the these numbers were picked at random, from the same
distribution, for all samples s. There are well established methods to test
the validity of such a hypothesis and to calculate for each gene a statistic
whose value indicates whether the null hypothesis should be accepted or
rejected, as well as the probability Pg for error (i.e., for rejecting the null
hypothesis on the basis of the data, even though it is correct). An alterna-
tive supervised analysis uses a subset of the tissues of known clinical label
to train a neural network (10) to separate them into the known classes on the
basis of their expression profiles. The generalization ability of the network
is then estimated by classifying a test set of samples (whose correct labels
are also known), that was not used in the training process.

The main disadvantage of supervised methods is their being limited to
hypothesis testing. If one has some prior knowledge which can lead to a
hypothesis, supervised methods will help to accept or reject it. They will
never reveal the unexpected and never lead to new hypotheses, or to new
partitions of the data. For example, if the tumors break into two unanti-
cipated classes on the basis of their expression profiles, a supervised
method will not be able to discover this. Another shortcoming is the (often
very common) possibility of misclassification of some samples (for an
example of such a case see Section 5.1). A supervised method will not dis-
cover, in general, samples that were mistakenly labeled and used in, say,
the training set.

The alternative is to use unsupervised methods of analysis. These aim at
exploratory analysis of the data, introducing as little external knowledge or
bias as possible, and ‘‘let the data speak.’’ That is, we explore the structure
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of the data on the basis of correlations and similarities that are present
in it. In the context of gene expression, such analysis has two obvious
goals:

1. Find groups of genes that have correlated expression profiles. The
members of such a group may take part in the same biological process.

2. Divide the tissues into groups with similar gene expression pro-
files. Tissues that belong to one group are expected to be in the same
biological (e.g., clinical) state.

The method presented here to accomplish these aims is called clustering.

3.2. Clustering—Statement of the Problem

The aims of cluster analysis (11, 12) can be stated as follows: given N data
points, Xi, i=1,..., N embedded in D-dimensional space (i.e., each point
is represented by D components or coordinates), identify the underlying
structure of the data. That is, partition the N points into M clusters, such
that points that belong to the same cluster are ‘‘more similar’’ to each other
than two points that belong to different clusters. In other words, one aims
to determine whether the N points form a single ‘‘cloud,’’ or two, or more;
in respectable unsupervised methods the number of clusters, M, is also
determined by the algorithm.

The clustering problem, as stated above, is clearly ill posed. No defi-
nition was given for what is ‘‘more similar;’’ furthermore, as we will see,
the manner in which data points are assigned to clusters depends on the
resolution at which the data are viewed. The last concern is addressed by
generating a dendrogram or tree of clusters, whose number and composi-
tion varies with the resolution that is used. To clarify these points I present
a simple example for a process of ‘‘learning without a teacher,’’ of which
clustering constitutes a particular case.

Imagine the following experiment; find a child who has never seen
either a giraffe or a zebra, and expose him to a large number of pictures of
these animals without saying a word of instruction. On each animal shown
the child performs a series of D measurements, two of which concern the
most prominent features of these animals: L, the length of the neck, and E,
the aspect ratio (i.e., the ratio of the small dimension and the large) of the
uniformly colored regions. Each animal is represented, in the child’s brain,
as a point in a D dimensional space. Figure 3 depicts the projection of these
points on the two dimensional (L, E) subspace.

Even though initially the child will see ‘‘animals’’—i.e., assign all
points to a single cloud—with time he will realize (as his resolution improves)
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Fig. 3. Left: Each zebra or giraffe is represented as a point on the neck length—coloration
shape plane. The points form two clouds marked by the black ellipses. At higher resolution
(controlled by the parameter T), we notice that the cloud of the giraffes is in fact composed of
two slightly separated sub clouds. The corresponding dendrogram is presented on the right
hand side.

that in fact the data break into two clear clouds; one with small values of
L and E, corresponding to the zebras, and the second—the giraffes—
with large L and E % 1. The child, not having been instructed, will not
know the names of the two kinds of animals he was exposed to, but I have
no doubt that he will realize that two different kinds of creatures appear in
the pictures. He has performed a clustering operation on the visual data he
has been presented with.

Let us pause and consider the data and the statements that were made.
Are there indeed two clouds in Fig. 3? As we already said, when the data
are seen with low resolution, they appear to belong to a single cloud of
animals. Improved resolution leads to two clouds—and closer inspection
reveals that in fact the cloud of giraffes breaks into two sub-clouds, of
points that have similar colorations but different neck lengths! Apparently
there were mature fully developed giraffes with long necks, and a group of
young giraffes with shorter necks. Finally, when resolution is improved to
the level of discerning individual differences between animals, each one
forms his own cluster. Thus the proper way of representing the structure of
the data is in the form of a dendrogram, also shown in Fig. 3. The vertical
axis corresponds to a parameter T that represents the resolution at which
the data are viewed. The horizontal axis is nominal—it presents a linear
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ordering of the individual data points (as identified by the final partition,
in which each cluster consists of one individual point). The ordering is
determined by the entire dendrogram—it can be thought of as a highly
nonlinear mapping of the data from D to one dimension.11 In any cluster-

11 See, for example ref. 9 for a way to order the data, that works when clusters are allowed to
split into two subclusters as the resolution increases.

ing algorithm that we use, we should look for the two features mentioned
here, of (a) yielding a dendrogram that starts with a single cluster of N
points and ends with N single-point clusters, and (b) providing a one-
dimensional ordering of the data (which is important mainly for visualiza-
tion purposes).

3.3. Clustering Algorithms

There are numerous clustering algorithms. Even though each aims at
achieving a truly unsupervised and objective method, every one has built
in, implicitly or explicitly, the bias of its inventor as to how a ‘‘cluster
should look’’—e.g., a tight, spherical cloud, or a continuous region of high
relative density and arbitrary shape, etc.

Average linkage, (11) an agglomerative hierarchical algorithm that joins
pairs of clusters on the basis of their proximity, is the most widely used for
gene expression analysis. (13) K-means (11, 12) and Self Organized Maps (14) are
algorithms that identify centroids or representatives for a preset number of
groups; data points are assigned to clusters on the basis of their distances
from the centroids. There are several physics related clustering algorithms,
e.g., Deterministic Annealing (15) and Coupled Maps. (16) Deterministic
Annealing uses the same cost function as K-means, but rather than mini-
mizing it for a fixed value of clusters K, it performs a statistical mechanics
type analysis, using a maximum entropy principle as its starting point. The
resulting free energy is a complex function of the number of centroids and
their locations, which are calculated by a minimization process. This
minimization is done by lowering the temperature variable slowly and
following minima that move and every now and then split (corresponding
to a second order phase transition). Since it has been proven (17) that in the
generic case (i.e., when there are no special symmetries in the data, such as
inversion) the free energy function exhibits first order transitions, the
deterministic annealing procedure is likely to follow one of it’s local
minima.

We use another physics-motivated algorithm, which maps the cluster-
ing problem onto the statistical physics of granular ferromagnets. (18)
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3.4. SuperParamagnetic Clustering (SPC)

The algorithm (19) assigns a Potts spin Si to each data point i. We use
q=20 components; the results depend very weakly on q. The distance
matrix

Dij=|Xi − Xj | (1)

is constructed. For each spin we identify a set of neighbors;12 a pair of

12 We used the K-mutual neighbors criterion, see ref. 19.

neighbors interact by a ferromagnetic (20) coupling Jij=f(Dij) with a
decreasing function f. We used a Gaussian decay, but since the interaction
between non-neighbors is set to J=0, the precise form of the function has
little influence on the results.

The energy of a spin configuration {S} is given by

H[{S}]=−C
OijP

Jij[1 − d(Si, Sj)] (2)

The summation runs over pairs of neighbors. We perform a Monte Carlo
simulation of this disordered Potts ferromagnet at a series of temperatures.
At each temperature T we measure the spin-spin correlation for every pair
of neighbors,

Gij=O[d(Si, Sj) − 1/q]/[1 − 1/q]P (3)

where the brackets O ·P represent an equilibrium average of the ferromag-
net (2), measured at T. If i and j belong to the same ordered ‘‘grain,’’ we
will have Gij % 1, whereas if the two spins are uncorrelated, Gij % 0. Hence
we threshold the values of Gij; if Gij > 0.5 the data points i and j are con-
nected by an edge. The clusters obtained at temperature T are the con-
nected components of the resulting graph. In fact, the simple thresholding
is supplemented by a ‘‘directed growth’’ process, described elsewhere. (19)

At T=0 the system is in its ground state, all Si have the same value,
and this procedure generates a single cluster of all N points. At T=. we
have N independent spins, all pairs of points are uncorrelated and the
procedure yields N clusters, with a single point in each. Hence clearly T
controls the resolution at which the data are viewed; as it increases, we
generate a dendrogram of clusters of decreasing sizes.

This algorithm has several attractive features, such as (i) the number
of clusters is determined by the algorithm itself and not externally
prescribed (ii) Stability against noise in the data; (iii) ability to identify a
dense set of points, that form a cloud of an irregular, non-spherical shape,
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as a cluster. (iii) generating a hierarchy (dendrogram) and providing a
mechanism to identify in it robust, stable clusters.

The physical basis for the last feature is that if a cluster is made of a
dense set of points on a background of lower density, well separated from
other dense regions, it will form (become an independent magnetized grain)
at a low temperature T1 and dissociate into subclusters at a high tempera-
ture T2. The ratio of the temperatures at which a cluster ‘‘dies’’ and
‘‘is born,’’ R=T2/T1, is a measure of its stability.

SPC was used in a variety of contexts, ranging from computer
vision (21) to speech recognition. (19) Its first direct application to gene
expression data has been (22) for analysis of the temporal dependence of the
expression levels in a synchronized yeast culture, (13, 23) identifying gene
clusters whose variation reflects the cell cycle.13 Subsequently, SPC was

13 We have also discovered in this analysis that the samples taken at even indexed time inter-
vals were placed in a freezer!

used (24) to identify primary targets of p53, a tumor suppressor that acts
as a transcription factor of central importance in human cancer, and of
another related transcription factor, p73. (25)

Our ability to identify stable and statistically significant (26) clusters is
of central importance for our usage of SPC in our algorithm for gene
expression analysis.

4. CLUSTERING GENE EXPRESSION DATA

4.1. Two Way Clustering

The clustering methodology described above can be put to use for
analysis of gene expression data in a fairly straightforward way, bearing in
mind the questions and aims listed in Sections 2.3 and 3.1.

We clearly have two main seemingly distinct aims; to identify groups
of co-regulated genes which probably belong to the same cellular machi-
nery or network, and to identify molecular characteristics of different cli-
nical states and discriminators between them. The obvious way to go about
these two tasks is by Two Way Clustering. First view the N samples as the
objects to be clustered; each is represented by a point in a G dimensional
‘‘feature space,’’ where G is the number of genes for which expression levels were
measured (in fact one works only with a subset of the genes on a chip—
those that pass some preset filters). This analysis yields a dendrogram
of samples, with each cluster containing samples with sizeable pairwise
similarities of their expression profiles measured over the entire set of genes.
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Fig. 4. Two-way clustering of brain tumor data; the two dendrograms, of genes and
samples, are shown next to the expression matrix.

The second way of looking at the same data is by considering the
genes as the objects to be clustered; G data points embedded in an N
dimensional feature space. This analysis groups together genes on the basis
of their correlations over the full set of samples. In Fig. 4 we present the
results of two-way clustering data obtained for 36 brain tumors (see the
next section for details). We show here the expression matrix, with the rows
corresponding to the genes and columns to samples. The dendrograms the
correspond to the two clustering operations described above are shown
next to the matrix, whose rows and columns have been already permuted
according to the linear order imposed by the two dendrograms.

This is the type of analysis that has been widely used in the gene
expression clustering literature. It represents a holistic approach to the
problem; using every piece of reliable information to look at the entire
grand picture. This approach does have, however, several obvious short-
comings; overcoming these was the motivation to develop a method which
can be viewed as taking a more reductionist approach, while improving
significantly the signal to noise ratio of the processed data.
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4.2. Coupled Two Way Clustering—Motivation

The main motivation of introducing CTWC (26) was to increase the
signal to noise ratio of the expression data. There are two different kinds of
‘‘noise’’ the method is designed to overcome.

The first of these is a problem generated by the very advantage and
most exciting aspect of DNA-chips—the ability to view expression levels of
a very large number of genes simultaneously. Say one stays, after initial
filtering, with two thousand genes, and one wishes to study a particular
aspect of the samples (e.g., differentiating between several kinds of cancer).
Chances are that the genes which participate in the pathology of interest
constitute only a small subset of the total 2000—say we have 40 genes
whose expression indeed distinguishes the samples on the basis of the
process that is studied. Hence the desired ‘‘signal’’ resides in 2% of the total
genes that are analyzed; the remaining 98% behave in a way that is uncor-
related with these and introduce nothing but noise. The contribution of the
relevant genes to the distance between a pair of samples will be over-
whelmed by the random signal of the much larger irrelevant set. My
favorite example for this situation is that of a football stadium, in which
99,000 spectators scream at random, while 1000 others are singing a
coherent tune. These 1000 are, however, scattered all over the stadium—the
chance that a listener, standing at the center of the field, will be able to
identify the tune are very small. If only we could identify the singers,
concentrate them into one stand and point a directional microphone at
them—we could hear the signal!

In the language of gene expression analysis, we would like to identify
the relevant subset of 40 genes, and use only their expression levels to
characterize the samples. In other words, to project the datapoints repre-
senting the samples from the 2000 dimensional space in which they are
embeddded, down to a 40 dimensional subspace, and to assess the struc-
ture of the data (e.g.,—do they form two or more distinct groups?) on the
basis of this projected representation. A similar effect may arise due
to the subjects; a partition of the genes which is much more relevant to
our aims could have been obtained had we used only a subset of the
samples.

Both these examples have to do with reducing the size of the feature
space. Sometimes it is important to use the reduced set of features to
cluster only a subset of the objects. For example, when we have expression
profiles from two kinds of leukemia patients, ALL and AML, with the ALL
patients breaking further into two sub-families, of T-ALL and B-ALL, the
separation of the latter two subclouds of points may be masked by the
interpolating presence of the AML group. In other words, a special set of
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genes will reveal an internal structure of the ALL cloud only when the
AML cloud is removed. (26)

The second noise-reducing feature of CTWC is that it uses the expres-
sion levels of a set of genes, rather than one gene at the time. Thereby
intrinsic noise in the expression averages out.

These statements amount to a need to work with special submatrices
of the full expression matrix (the same problem was recognized also in
refs. 27 and 28, and addressed more recently in refs. 29 and 30). The
number of such submatrices is exponential in the size of the dataset, and
the obvious question that arises is—how can one select the ‘‘right’’ sub-
matrices in an unsupervised and yet efficient way? The CTWC algorithm
provides a heuristic answer to this question.

4.3. Coupled Two Way Clustering—Implementation

CTWC is an iterative process, whose starting point is the standard two
way clustering mentioned above. Denote the set of all samples by S1 and
that of all genes used as G1. The notation S1(G1) stands for the clustering
operation of all samples, using all genes, and G1(S1) for clustering the
genes using all samples. From both clustering operations we identify stable
clusters of genes and samples, i.e., those for which the stability index R
exceeds a critical value and whose size is not too small. Stable gene clusters
are denoted as GI with I=2,3,... and stable sample clusters as SJ, J=2,3,...
In the next iteration we use every gene cluster GI (including I=1) as the
feature set, to characterize and cluster every sample set SJ. These opera-
tions are denoted by SJ(GI) (we clearly leave out S1(G1)). In effect, we use
every stable gene cluster as a possible ‘‘relevant gene set;’’ the submatrices
defined by SJ and GI are the ones we study. Similarly, all the clustering
operations of the form GI(SJ) are also carried out. In all clustering opera-
tions we check for the emergence of partitions into stable clusters, of genes
and samples. If we obtain a new stable cluster, we add it to our list and
record its members, as well as the clustering operation that gave rise to it.
If a certain clustering operation did not give rise to new significant parti-
tions, we move down the list of gene and sample clusters to the next pair.

This heuristic identification of relevant gene sets and submatrices is
nothing but an exhaustive search among the stable clusters that were gen-
erated. The number of these, emerging from G1(S1) is a few tens, whereas
S1(G1) generates a few stable sample clusters usually. Hence the next stage
typically involves less than a hundred clustering operations. These iterative
steps stop when no new stable clusters beyond a preset minimal size are
generated, which usually happens after the first or second level of the
process.
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In a typical analysis we generate between 10 and 100 interesting parti-
tions, which are searched for biologically or clinically interesting findings,
on the basis of the genes that gave rise to the partition and on the basis of
available clinical labels of the samples. It is important to note that these
labels are used a posteriori, after the clustering has taken place, to interpret
and evaluate the results.

5. APPLICATIONS OF CTWC FOR GENE EXPRESSION DATA

ANALYSIS

So far CTWC has been applied primarily to analysis of data from
various kinds of cancer. The data are produced by experimental groups;
our level of collaboration with these vary from no contact at all to close
collaboration from an early stage of the acquisition. Our initial work (26) on
colon cancer (9) and leukemia (31) used publicly available data, with no prior
contact with the groups that did the original measurements and analysis.
For breast cancer we also worked (32, 38) with publicly available data, (33, 34)

but its choice and the challenge to improve on existing analysis came from
a researcher involved in the original work. Our investigations of brain
tumors (35) was done in close collaboration with a group at the University
Hospital at Lausanne (CHUV), which is also the case for our current work
on skin (36) and colon cancer (37, 38) and on leukemia. We have a close colla-
boration also on applying the same method (39) to analyze data obtained
from an ‘‘antigen chip,’’ used to study the antibody repertoire of subjects
that suffer from autoimmune diseases, such as diabetes.

I will limit the discussion here to presentation of a few select results
obtained for glioblastoma (35) and for breast cancer. (32)

5.1. CTWC Analysis of Brain Tumors (Gliomas)

Brain tumors are classified into three main groups. Low grade astro-
cytoma (A) are small sized tumors at an early stage of development. Can-
cerous growth may recur after their removal, giving rise to secondary
gliomas (SC). The third kind are primary (PR) glioblastoma (GBM); this
classification is assigned when at the stage of initial diagnosis and discovery
the tumor is already of a large size. A dataset S1 of 36 samples was
obtained by a group from the University Hospital at Lausanne. (35) 17 of
these were from PR GBM, 4—from SC, 12 were from A and 3 from
human glioma cell lines grown in culture. Expression profiles were
obtained using Clontech Atlas 1.2 arrays of 1176 genes. For each gene g
the measured expression value for tumor sample s was divided by its value
in a reference sample composed of a mixture of normal brain tissue. We
filtered the genes by keeping only those for which the maximal value of this
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ratio (over the 36 samples) exceeded its minimal value by at least a factor
of two. 358 genes passed this filter and constituted our full gene set G1,
which was clustered using expression ratios over S1. The G1(S1) clustering
operation (see Fig. 4) yielded 15 stable gene clusters. The complementary
operation S1(G1) did not yield any partition of the samples that could be
given clear clinical interpretation.

One of the stable gene clusters, G5, contained 9 genes. When the
expression levels of only these genes are used to characterize the tumors
[in the operation denoted S1(G5)], a large and stable cluster, S11, of 21
tumors, emerged (see Fig. 5)

This cluster contained all the 12 astrocytoma and all 4 SC tumors.
Three of the remaining 5 tumors of S11 were cell lines and two were
registered as PR GBMs. Pathological diagnosis was redone for these two
tumors; one was found to contain a significant oligoastrocytoma com-
ponent, and much of the piece of the other, that was used for RNA
extraction, was diagnosed as of normal brain ifiltrative zone. Hence the
expression levels of G5 gave rise to a nearly perfect separation of PR from
non-PR (A and SC tumors). The genes of G5 were significantly upregu-
lated in PR and downregulated in A and SC.

Fig. 5. The operation S1(G5), clustering all tumors on the basis of their expression profiles
over the genes of cluster G5. A stable cluster, S11 emerges, containing all the non-primary
tumors and only two of the primaries.
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These findings made good biological sense, since three of the genes in
G5 (VEGF, VEGFR and PTN) are related to angiogenesis. Angiogenesis is
the process of development of blood vessels, which are essential for the
growth of tumors beyond a certain critical size (blood brings nutrition to
and removes waste from the growing tissue). Upregulation of genes that
are known to be involved in angiogenesis is a logical consequence of the
fact that PR GBM are large tumors.

An important application of the method concerns investigation of the
genes that belong to G5; in particular, one of the genes of G5, IGFBP2,
was of considerable interest with little existing clues to its function and
role in cancer development. Our finding, that its expression is strongly
correlated with the angiogenesis related genes came as a surprise that was
worth detailed further study. The co-expression of genes from the IGFBP
family with VEGF and VEGFR has been demonstrated in an independent
experiment(35) that tested this directly for cell lines under different conditions.

This example demonstrates the power of CTWC; a subgroup of genes
with correlated expression levels was found to be able to separate PR from
non-PR GBM, whereas using all the genes introduced noise that wiped out
this separation. In addition, by looking at the genes of this correlated set,
we provided an indication for the role that a gene with previously unknown
function may play in the evolution of tumors.

For other findings of interest in this data set we refer the reader to the
paper by Godard et al. (35)

5.2. Breast Cancer Data

In a different study, on breast cancer, we used publicly available
expression data of Perou et al. (33) Our choice of this particular data set was
guided by D. Botstein, who informed us that of the publicly available data
produced by his group these were of the highest quality and were submitted
to most extensive effort for analysis; he challenged us to demonstrate that
our method can extract findings that eluded previous treatments. The
results of this study are available; (32) here I present only one particular new
finding. A partial report of analysis of a related data set (34) is presented in
ref. 38.

The Stanford data (33) contained expression profiles of 65 human
samples (S1) and 19 cell lines. 40 tumors were paired, with samples taken
before and after chemotherapy (with doxorubicin), to which 3 (out of 20)
subjects responded positively. 1753 genes (G1) passed initial filtering; the
clustering operation S1(G1), of all the samples using their expression pro-
files over all these genes, did not yield any clear meaningful partitions.
Perou et al realized the same point that has motivated us to construct
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CTWC, namely that one has to prune the number of genes that are used in
order to improve the signal to noise ratio. They ranked the genes according
to a figure of merit they introduced, which measures the proximity of
expressions of the two samples taken from the same patient before and
after chemotherapy, versus the (expectedly larger) dissimilarity of samples
from different patients. The 496 top scorers constituted their ‘‘intrinsic gene
set’’ which was then used to cluster the samples.

We did not use this intrinsic set but rather, applied CTWC on the full
sets of samples and genes. In the G1(S1) operation we found several stable
gene clusters. One of these, G46, contained 33 genes, whose expression
levels correlate well with the cells’ proliferation rates. Only 2 out of these
made it into the intrinsic set of Perou et al; hence they could not have
found any result that we obtained on the basis of these genes.

The operation S1(G46) identified three main clusters; (a) of samples
with low proliferation rates—these are ‘‘normal breast—like;’’ (b) samples

Fig. 6. The operation S1(G46), clustering all tumors on the basis of the proliferation related
genes of G46. We found a cluster (b) which contained all three samples from patients for who
chemotherapy was successful, taken before the treatment. Cluster (b) contained 10 out of the
20 ‘‘before’’ samples.
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with intermediate, and (c) with high proliferation rates. Interestingly, the
‘‘before treatment’’ samples taken from all three tumors for which che-
motherapy did succeed were in cluster (b), whereas the corresponding
‘‘after treatment’’ samples were in (a), the ‘‘normal breast—like’’ cluster.
Therefore the genes of G46 can perhaps be used a posteriori, to indicate
success of treatment on the basis of their expression measured after treat-
ment and, more importantly, may have predictive power with respect to the
probability of success of the doxorubicin therapy that was used. Interme-
diate expression of the G46 genes may serve as a marker for a relatively
high success rate of the Doxorubicin treatment (3/10 versus 3/20 for the
entire set of ‘‘before treatment’’ samples). Clearly these statements are
backed only by statistics based on small samples, but they do indicate pos-
sible clinical applications of the method, provided experiments on more
samples strengthen the statistical reliability of these preliminary findings.

6. SUMMARY

DNA chips provide a new, previously unavailable glimpse into the
manner in which the expression levels of thousands of genes vary as a
function of time, tissue type and clinical state. Coupled Two Way Cluster-
ing provides a powerful tool to mine large scale expression data by iden-
tifying groups of correlated (and possibly co-regulated) genes which, in
turn, are used to divide the samples into biologically and clinically relevant
groups. The basic ‘‘engine’’ used by CTWC is a clustering algorithm rooted
in the methodology of and insight gained from Statistical Physics.

The extracted information may enlarge our body of general basic
knowledge and understanding, especially of gene regulatory networks and
processes. In addition, it may provide clues about the function of genes and
their role in various pathologies; one can also hope to develop powerful
diagnostic and prognostic tools based on gene microarrays.
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